Publications

Here are publications from the different areas of the Michigan Catalysis Science & Technology Institute.

40. Akinola, James et al. Electrocatalytic hydrogenation of phenol on platinum-cobalt alloys, J. Catal. (2024). (Just Accepted) 

39. Mathanker, Ankit, et al. “Effects of ions on electrocatalytic hydrogenation and oxidation of organics in aqueous phase.” Current Opinion in Electrochemistry (2023): 101347. https://doi.org/10.1016/j.coelec.2023.101347

38. Doherty, Francis, and Bryan R. Goldsmith. “Modeling plasma-induced surface charge effects on CO2 activation by single atom catalysts supported on reducible and irreducible metal oxides.” Plasma Sources Science and Technology 32.3 (2023): 034004. DOI 10.1088/1361-6595/acc19f

37. Agarwal, Harsh, et al. “Explaining Kinetic Trends of Inner-Sphere Transition-Metal-Ion Redox Reactions on Metal Electrodes.” ACS Catalysis 13.4 (2023): 2223-2233. https://doi.org/10.1021/acscatal.2c05694

36. Ma, Xiao Yin., Coleman, B., Prabhu, P., Wei, F. “Segmentation and evaluation of pathway module efficiency: Quantitative approach to monitor and overcome evolving bottlenecks in xylose to ethanol pathway.” Bioresource Technology 395, March 2024. DOI: 10.1016/j.biortech.2024.130377

35. Gruich, Cameron J., et al. “Clarifying trust of materials property predictions using neural networks with distribution-specific uncertainty quantification.” Machine Learning: Science and Technology 4.2 (2023): 025019. DOI 10.1088/2632-2153/accace

34. Explaining the structure sensitivity of Pt and Rh for aqueous-phase hydrogenation of phenol, I. Barth, J. Akinola, J. Lee, O. Y. Gutiérrez, U. Sanyal, N. Singh, B. R. Goldsmith, J. Chem. Phys. 156, 104703 (2022). DOI: 10.1063/5.0085298

33. Interpretable machine learning for knowledge generation in heterogeneous catalysis, J. A. Esterhuizen, B. R. Goldsmith, S. Linic, Nature Catalysis 5, 175-184 (2022). DOI: 10.1038/s41929-022-00744-z

32. Accelerating the structure search of catalysts with machine learning, Musa, E., Doherty, F., Goldsmith, B. R., Curr. Opin. Chem. Eng. 35 100771 (2022). DOI: 10.1016/j.coche.2021.100771

31. Effects of Solvents on Adsorption Energies: A General Bond-Additivity Model, Akinola, J., Campbell, C.T., Singh, N., J. Phys. Chem. C (2021). DOI: 10.1021/acs.jpcc.1c06781

30. Electrocatalytic nitrate reduction on rhodium sulfide compared to Pt and Rh in the presence of chloride, Richards, D., Young, S.D., Goldsmith, B. R., Singh, N., Catal. Sci. Technol. 11, 7331 (2021). DOI: 10.1039/D1CY01369F

29. Comparing electrocatalytic and thermocatalytic conversion of nitrate on platinum-ruthenium alloys, Wang, Z., Ortiz, E., Goldsmith, B. R., Singh, N., Catal. Sci. Technol. 11, 7098–7109 (2021). DOI: 10.1039/D1CY01075A

28. Why halides enhance heterogeneous metal ion charge transfer reactions, Florian, J., Agarwal, H., Singh, N., Goldsmith, B. R., Chem. Sci. 12, 12704–12710 (2021). DOI: 10.1039/D1SC03642D

27. Uncovering electronic and geometric descriptors of chemical activity for metal alloys and oxides using unsupervised machine learning, Esterhuizen, J., Goldsmith, B. R., Linic, S., Chem Catalysis 1, 1 (2021). DOI: 10.1016/j.checat.2021.07.014

26. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit, Motagamwala, A.H., Almallahi, R., Wortman, J., Igenegbai, V.O., Linic, S., Science. 373, 6551, pp. 217-222 (2021). DOI: 10.1126/science.abg7894

25. Rhodium single-atom catalysts on titania for reverse water gas shift reaction explored by first principles mechanistic analysis and compared to nanoclusters, Doherty, F. and Goldsmith, B. R., ChemCatChem 13, 1-11 (2021). DOI: 10.1002/cctc.202100292

24. Design Principles for Efficient and Stable Water Splitting Photoelectrocatalysts, Hemmerling, J.R., Mathur, A., Linic, S., Acc. Chem. Research. 54, 8, 1992–2002 (2021). DOI: 10.1021/acs.accounts.1c00072

23. In-operando surface-sensitive probing of electrochemical reactions on nanoparticle electrocatalysts: Spectroscopic characterization of reaction intermediates and elementary steps of oxygen reduction reaction on Pt, Dix, ST., Linic, S., J. Catal. 396, 32-39 (2021). DOI: 10.1016/j.jcat.2021.02.009

22. Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction, Wang, Z., Richards, D., Singh, N., Catal. Sci. Technol. 11, 705-725 (2021). DOI: 10.1039/D0CY02025G

21. Increasing Electrocatalytic Nitrate Reduction Activity by Controlling Adsorption through PtRu Alloying, Wang, Z., Young, S. D., Goldsmith, B. R., Singh, N., J. Catal. 395, 143-154 (2021). DOI: 10.1016/j.jcat.2020.12.031

20. The Effect of Anion Bridging on Heterogeneous Charge Transfer for V2+/V3+, Agarwal, H., Florian, J., Goldsmith, B. R., Singh, N., Cell Rep. Phys. Sci. 2, 100307 (2021). DOI: 10.1016/j.xcrp.2020.100307

19. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures, Linic, S., Chavez, R., Elias, R., Nature Mat. 20, 916–924 (2021). DOI: 10.1038/s41563-020-00858-4

18. Temperature Dependence of Aqueous-Phase Phenol Adsorption on Pt and Rh, Akinola, J., Singh, N., Journal of Applied Electrochemistry 51, 37-50 (2021). DOI: 10.1007/s10800-020-01503-3

17. Critical Practices in Rigorously Assessing the Inherent Activity of Nanoparticle Electrocatalysts, Dix, ST., Lu, S. Linic, S., ACS Catal. 10(18), 10735-10741 (2020). DOI: 10.1021/acscatal.0c03028

16. Theory-Guided Machine Learning Finds Geometric Structure-Property Relationships for Chemisorption on Subsurface Alloys, Esterhuizen, J., Goldsmith, B. R., Linic, S., Chem 6, 1-18 (2020). DOI: 10.1016/j.chempr.2020.09.001

15. Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review, Akhade, S. A., Singh, N., Gutiérrez, O. Y., Lopez-Ruiz, J., Wang, H., Holladay, J. D., Liu, Y., Karkamkar, A., Weber, R. S., Padmaperuma, A. B., Lee, M. S., Whyatt, G. A., Elliott, M., Holladay, J. E., Male, J. L., Lercher, J. A., Rousseau, R., Glezakou, V. A., Chem. Rev. 120, 11370-11419 (2020). DOI: 10.1021/acs.chemrev.0c00158

14. Structure and Free Energies of Cerium Ions in Acidic Electrolytes, Buchanan, C. A., Ko, E., Cira, S., Balasubramanian, M., Goldsmith, B. R., Singh, N., Inorg. Chem. 59, 12552-12563 (2020). DOI: 10.1021/acs.inorgchem.0c01645

13. Nanocluster and Single-atom Catalysts for Thermocatalytic Conversion of CO and CO2, Doherty, F., Wang, H., Yang, M., Goldsmith, B. R., Catal. Sci. Technol. 10, 5772-5791(2020). DOI: 10.1039/D0CY01316A

12. Quantifying Losses and Assessing the Photovoltage Limits in Metal–Insulator–Semiconductor Water Splitting Systems, Hemmerling, J., Quinn, J., Linic, S. Adv. Energy Mat. 10, 1903354 (2020). DOI: 10.1002/aenm.201903354.

11. Adsorption Energies of Oxygenated Aromatics and Organics on Rhodium and Platinum in Aqueous Phase, Akinola, J., Barth, I., Goldsmith, B. R., Singh, N. ACS Catal. 10, 4929-4941 (2020). DOI: 10.1021/acscatal.0c00803.

10. Role of Electrocatalysis in the Remediation of Water Pollutants, Singh, N., Goldsmith, B. R. ACS Catal. 10, 3356–3371 (2020). DOI: 10.1021/acscatal.9b04167

9. Aqueous Phase Catalytic and Electrocatalytic Hydrogenation of Phenol and Benzaldehyde over Platinum Group Metals, Singh, N., Sanyal, U., Ruehl, G., Stoerzinger, K., Gutiérrez, O. Y., Camaioni, D. M., Fulton, J. L., Lercher, J. A., Campbell, C. T., J. Catal. 382, 372–384 (2020). DOI: 10.1016/j.jcat.2019.12.034

8. Guidelines for Optimizing the Performance of Metal−Insulator−Semiconductor (MIS) Photoelectrocatalytic Systems by Tuning the Insulator Thickness, Hemmerling, J., Quinn, J., Linic, S. ACS Energy Lett., 4, 2632−2638 (2019). DOI: 10.1021/acsenergylett.9b01609

7. V2+/V3+ Redox Kinetics on Glassy Carbon in Acidic Electrolytes for Vanadium Redox Flow Batteries, Agarwal, H., Florian, J., Goldsmith, B. R., Singh, N., ACS Energy Lett. 4, 2368–2377 (2019). DOI: 10.1021/acsenergylett.9b01423

6. Surpassing the Single-Atom Catalytic Activity Limit through Paired Pt-O-Pt Ensemble Built from Isolated Pt1 Atoms, Wang, H., Liu, J.-X., Li, W., Allard, L. F., Lee, S., Wang, J., Li, H., Wang, J., Cao, X., Shen, M., Goldsmith, B. R., Yang, M., Nat. Commun. 10, 1 (2019). DOI: 10.1038/s41467-019-11856-9

5. A Simple Bond-Additivity Model Explains Large Decreases in Heats of Adsorption in Solvents Versus Gas Phase: A Case Study with Phenol on Pt(111) in Water. Singh, N. &  Campbell, C. T., ACS Catal. 9, 8116–8127 (2019). DOI: 10.1021/acscatal.9b01870

4. Elucidating Structure–Performance Relationships in Whole-Cell Cooperative Enzyme Catalysis. Smith, M. R., Gao, H., Prabhu, P., Bugada, L. F., Roth, C., Mutukuri, D., Yee, C. M., Lee, L., Ziff , R. M., Lee, J.-K. & Wen, F., Nature Catal. 2, 809–819 (2019). DOI: 10.1038/s41929-019-0321-8

3. Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals. Liu, J.-X., Richards, D., Singh, N. & Goldsmith, B. R., ACS Catal. 9, 7052–7064 (2019). DOI: 10.1021/acscatal.9b02179

2. Quantifying Adsorption of Organic Molecules on Platinum in Aqueous Phase by Hydrogen Site Blocking and In Situ X-ray Absorption Spectroscopy. Singh, N., Sanyal, U., Fulton, J. L., Gutiérrez, O. Y., Lercher, J. A. & Campbell, C. T., ACS Catal. 9, 6869–6881 (2019). DOI: 10.1021/acscatal.9b01415

1. Oxidative Coupling of Methane over Hybrid Membrane/Catalyst Active Centers: Chemical Requirements for Prolonged Lifetime. Igenegbai, V. O., Almallahi, R., Meyer, R. J. & Linic, S., ACS Energy Lett. 4, 1465–1470 (2019). DOI: 10.1021/acsenergylett.9b01075